Oh no...what we’re learning today is HARD!!??
Exploration 1-4a.
For a reminder, read #3 before starting #2

Conical Tank Problem

In a chemical plant, a conical 10' tall tank, with a 5' base radius is being emptied of liquid Benzene at a constant rate of 5 ft3/min. At time $t = 0$ min., 100 ft3 of Benzene is in the tank. The tank has a radius of 5 ft. and height of 10 ft.

A. Draw a picture of the situation described.
b) Volume \(V(t) \)
\[V(t) = 100 - 5t \]

c) \[\frac{5}{10} = \frac{r}{h} \]
\[10r = 5h \]
\[r = \frac{1}{2} h \]

\[V = \frac{1}{3} \pi \left(\frac{1}{2} h \right)^2 h \]
\[V = \frac{1}{3} \pi \left(\frac{1}{4} h^2 \right) h \]
\[V = \frac{1}{12} \pi h^3 \]

d) \[R \cdot V = \frac{1}{12} \pi h^3 \cdot 12 \]
\[12V = \pi h^3 \]
\[\frac{12V}{\pi} = h^3 \]
\[\sqrt[3]{h^3} = \sqrt[3]{\frac{12V}{\pi}} \]

h = \sqrt[3]{\frac{12V}{\pi}}
e. Write an equation expressing "h" as a function of V. Use the result and the information in part a to write an equation for the composite function h(V(t)).

\[
h = \sqrt[3]{\frac{12V}{\pi}}
\]

\[
h(V(t)) = \sqrt[3]{\frac{12(100 - 5t)}{\pi}}
\]

F. At what time will the tank be completely empty?

\[
set h = 0
\]

\[
0 = \sqrt[3]{\frac{12(100 - 5t)}{\pi}}
\]

\[
0 = 1200 - 60t
\]

\[
t = \frac{1200}{60} = 20\text{ min}
\]

G. At what negative value of t was the tank completely full?

\[
set h = 10
\]

\[
10 = \sqrt[3]{\frac{12(100 - 60t)}{\pi}}
\]

\[
1000 = 1200 - 60t
\]

\[
t = \frac{1200 - 60(1941.59)}{60} = 32.36\text{ min}
\]

H. What, then, is the domain of the function h ∘ V?

\[-32.36 \leq t \leq 20\]
3. Use the following functions on the restricted domains.

\[g(x) = 10 - 2x \quad 1 \leq x \leq 4 \]
\[f(x) = x + 2 \quad 3 \leq x \leq 7 \]

A. Plot \(g \), \(f \), \(f \circ g \)

\[f \circ g = 10 - 2x + 2 \quad 1.5 \leq x \leq 3.5 \]
\[= 12 - 2x \]
\[f(g(1.5)) \quad f(g(3.5)) \]

B. Find \(f(g(3)) \)

\[g(3) = 4 \quad f(4) = 6 \]

C. Find the domain of \(f \circ g \).

*To do this..

Put \(g(x) \) into the domain of \(f(x) \) and solve for \(x \). Next, make sure \(x \) is in the domain of \(g \).
D. Show that \(g(f(2)) \) and \(g(f(5)) \) are both undefined but for different reasons.

\[
g(f(2)) = \text{undefined} \quad 2 \text{ is not in the domain } f(x)
\]

\[
g(f(5)) = f(5) = 7 \quad g(f(5)) = \text{undefined} \quad 7 \text{ is not in the domain of } g(x)
\]

E. Find the domain of \(g \circ f \) algebraically.

\[
f(x) = x+2 \quad g(x) \text{ domain } 1 \leq x \leq 4
\]

\[
1 \leq x+2 \leq 4 \quad \frac{-2}{2} \quad \frac{-2}{-2} \quad -1 \leq x \leq 2
\]

F. Graph \(y = g(f(x)) \)

\[
g(f(x)) = 10 - 2(x+2)
\]

\[
= 10 - 2x - 4 = 6 - 2x
\]

G. Find \(f(f(4)) \).

\[
f(4) = 6 \quad f(6) = \square
\]

H. Show \(g(g(2)) \) is undefined.

\[
g(2) = 6 \quad g(g(2)) = \text{undefined}
\]

\[
g(g(2)) = \text{not in } g(x) \text{ domain}
\]
4. Use the following functions in the restricted domains.

\[f(x) = \sqrt{x} \quad x \geq 0 \]

\[g(x) = x - 5 \quad \forall x \in \mathbb{R} \]

Find the domains of \(f \circ g \) and \(g \circ f \)

\[f \circ g = x \geq 5 \]

\[\text{Domain} \]

B. Express the volume of the Benzene in the tank in terms of \(t \).

C. Find the volume of the liquid in the tank in terms of \(h \) (Recall volume of a cone \(V = \frac{1}{3} \pi r^2 h \))

*create a proportion to start off...

D. Solve part C for \(h \).